Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338406

RESUMO

As chloride (Cl-) is a commonly found anion in natural water, it has a significant impact on electrocatalytic oxidation processes; yet, the mechanism of radical transformation on different types of anodes remains unexplored. Therefore, this study aims to investigate the influence of chlorine-containing environments on the electrocatalytic degradation performance of levofloxacin using BDD, Ti4O7, and Ru-Ti electrodes. The comparative analysis of the electrode performance demonstrated that the presence of Cl- improved the removal and mineralization efficiency of levofloxacin on all the electrodes. The enhancement was the most pronounced on the Ti4O7 electrode and the least significant on the Ru-Ti electrode. The evaluation experiments and EPR characterization revealed that the increased generation of hydroxyl radicals and active chlorine played a major role in the degradation process, particularly on the Ti4O7 anode. The electrochemical performance tests indicated that the concentration of Cl- affected the oxygen evolution potentials of the electrode and consequently influenced the formation of hydroxyl radicals. This study elucidates the mechanism of Cl- participation in the electrocatalytic degradation of chlorine-containing organic wastewater. Therefore, the highly chlorine-resistant electrocatalytic anode materials hold great potential for the promotion of the practical application of the electrocatalytic treatment of antibiotic wastewater.

2.
J Environ Manage ; 339: 117800, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030239

RESUMO

The use of calcined sediments (CS) for thin-layer capping is an environment-friendly technology for controlling nitrogen (N) or phosphorus (P) release. However, the effects of CS derived materials and efficiency in controlling the sedimentary N/P ratio have not been thoroughly investigated. While zeolite-based materials have been proven efficient to remove ammonia, it is limited by the low adsorption capacity of PO43-. Herein, CS co-modified with zeolite and hydrophilic organic matter (HIM) was synthesized to simultaneously immobilize ammonium-N (NH4+-N) and remove P, due to the superior ecological security of natural HIM. Studies on the influences of calcination temperature and composition ratio indicated that 600 °C and 40% zeolite were the optimal parameters leading to the highest adsorption capacity and lowest equilibrium concentration. Compared with doping with polyaluminum chloride, doping with HIM not only enhanced P removal but also achieved higher NH4+-N immobilization efficacy. The efficiency of zeolite/CS/HIM capping and amendment in prohibiting the discharge of N/P from sediments was assessed via simulation experiments, and the relevant control mechanism was studied at the molecular level. The results indicated that zeolite/CS/HIM can reduce 49.98% and 72.27% of the N flux and 32.10% and 76.47% of the P flux in slightly and highly polluted sediments, respectively. Capping and incubation with zeolite/CS/HIM simultaneously resulted in substantial reductions in NH4+-N and dissolved total P in overlying water and pore water. Chemical state analysis indicated that HIM enhanced the NH4+-N adsorption ability of CS owing to its abundant carbonyl groups and indirectly increased P adsorption by protonating mineral surface groups. This research provides a novel strategy to control sedimentary nutrient release by adopting an efficient and ecologically secure remediation method to rehabilitate eutrophic lake systems.


Assuntos
Poluentes Químicos da Água , Zeolitas , Amônia/análise , Zeolitas/química , Sedimentos Geológicos/química , Poluentes Químicos da Água/química , Fósforo/química , Lagos , Água/análise , Nitrogênio/análise
3.
J Environ Manage ; 330: 117103, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603249

RESUMO

Dredged sediments derived from eutrophicated lakes poses hardness of sludge disposal and ecological risks. The proper pretreatment and utilization of dredged sediments presented a challenge. In this study, Dianchi Lake sediments were dredged, thermally treated and utilized as particle capping material in batch experiments. The effects of calcination on phosphorus speciation and sediment-water interface environment as well as P immobility mechanism were predominantly explored. The microstructures and chemical compositions of calcined sediments were investigated, indicating the porosity and mineralization components were greatly enhanced. The fractional analysis of phosphorus revealed that the calcination process reduced the percentage of unsteady phosphorus, transforming into stable inert phosphorus fractions (Al-P, Ca-P and Res-P), respectively, thereby minimized its mobility and eutrophication risk. Interestingly, calcination temperatures of 700 °C and 800 °C resulted in smaller releasing potentials and equilibrium phosphorus concentrations, despite having lower adsorption capacities than 550 °C. Furthermore, the results of redox potential monitoring showed that the thermally treated Dianchi Lake sediments could enhance the redox potential and dissolved oxygen in the surface sediment, indicating the amelioration of interfacial environment. The practical monitoring experiments confirmed the capping depressed the DTP to 0.031 mg L-1. The investigation of this study provided explicit evidence of Ca coupled P and aerobic Fe bound P strengthened the immobilization effects, and the development of sediment calcination demonstrates a promising strategy for alleviating the burden of endogenous pollution and improving aerobic environment, which are of great significance for lake ecological remediation.


Assuntos
Fósforo , Poluentes Químicos da Água , Fósforo/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Lagos/química , Eutrofização , Monitoramento Ambiental , China
4.
Chemosphere ; 307(Pt 4): 136070, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35985379

RESUMO

Black carbon (BC) and humic acid (HA) have been proposed to dominate the sorption behavior of phenanthrene in sediment. Nevertheless, little is known about the sorption mechanism that related to particle-scale by spiking of BC and HA in sediment particle size fractions. In this study, sorption isotherms for phenanthrene were determined in four particle-size sediment fractions (<2 µm, 2-31 µm, 31-63 µm and >63 µm) that amended with BC and HA, or not. The fitting results by Freundlich model indicated that the sediment particle size fractions amended with BC increased the sorption capacity and affinity for phenanthrene. Sediment coarser size fractions (31-63 µm and >63 µm) by spiking of BC contributed higher to sorption capacity factor (KF) and nonlinearity factor (n) than the finer size fractions (2-31 µm and <2 µm). By contrast, the sediment particle size fractions amended with HA enhanced the sorption distribution coefficient (Kd), but reduced the sorption affinity for phenanthrene. All these phenomena are obviously affected by the distribution of heterogeneous organic matter that related to sediment particle-scale. Results of this work could help us better understand the impact of increased BC and HA content in sediments on the sorption of hydrophobic organic pollutants (HOCs) and predict the fate of HOCs in offshore sediments due to tidal action.


Assuntos
Poluentes Ambientais , Fenantrenos , Adsorção , Carbono/química , Sedimentos Geológicos/química , Substâncias Húmicas/análise , Fenantrenos/química , Fuligem
5.
Environ Res ; 214(Pt 2): 113842, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35843278

RESUMO

The traditional interlayer of PbO2 electrode possessed many problems, such as short service lifetime and limited specific surface area. Herein, a novel and efficient Ti/polyaniline-Co/PbO2-Co electrode was conctructed employing cyclic voltammetry to introduce a Co-doped polyaniline interlayer and anodic electrodeposition to synthetize a ß-PbO2-Co active layer. Compared with pristine PbO2 electrode, Ti/polyaniline-Co/PbO2-Co exhibited more compact crystalline shape and higher active sites amounts. Pratically, the electrochemical degradation of 5 mg L-1 cephalexin in real secondary effluents was effectively achieved by the novel anode with 87.42% cephalexin removal and 71.8% COD mineralization after 120 min of 15 mA cm-2 electrolysis. The hydroxyl radical production and electrochemical stability were increased by 3.16 and 3.27 times respectively. The cephalexin degradation pathway was investigated by combining a density functional theory-based theoretical approach and LC-QTrap-MS/MS. The most likely cleavage point of the ß-lactam ring was the O=C-N bond, whose attack would produce small molecular compounds containing the thiazole and 4, 6-thiazine rings. Further oxidation produced inorganic ions; quantitative investigations indicated the amino groups to undergo decomposition to form aqueous NH4+, which was further oxidized to NO3-. The accumulation of NO3- and SO42-, combined with a decrease in toxicity toward Escherichia coli, demonstrated the efficient mineralization of cephalexin on the Ti/polyaniline-Co/PbO2-Co electrode.


Assuntos
Titânio , Poluentes Químicos da Água , Compostos de Anilina , Cefalexina , Oxirredução , Óxidos/química , Espectrometria de Massas em Tandem , Titânio/química , Poluentes Químicos da Água/análise
6.
J Hazard Mater ; 436: 129175, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643001

RESUMO

Human activities significantly increase the input of offshore heavy metals and organic pollutants. Although particle-scale and heterogeneous organic matters are fundamentally important to the fate of hydrophobic organic compounds (HOCs), deep understanding of the adsorption mechanism of HOCs on soil/sediment particles under the influence of heavy metal and organic pollution input is needed. This study investigates the effects of exotic DOM and heavy metals ions on the phenanthrene adsorption on sediment fractions. The adsorption experiments demonstrated that exotic DOM increased phenanthrene adsorption amount of sediment, with the greatest enhancement on clay particles (<2 µm). Nevertheless, the mechanism was differentiated accordingly to particle dimensions in terms of increased binding coefficients and mobility of phenanthrene. Furthermore, the introduction of heavy metals considerably enhanced the nonlinear sorption of phenanthrene. The Freundlich exponent N reduced by 0.01-0.24 when adding Cu2+, Zn2+ and Pb2+, especially for coarse particles (31-63 µm) fraction. In comparison, the enhancement of nonlinearity adsorption by Cu2+ and Zn2+ is significantly lower than Pb2+ ions. To our knowledge, the particle-scale study broadens the horizon of environmental fate and ecological risk of HOCs in intertidal regions, which is significantly affected by tidal action.


Assuntos
Metais Pesados , Fenantrenos , Poluentes do Solo , Adsorção , Matéria Orgânica Dissolvida , Humanos , Íons , Chumbo , Metais Pesados/química , Compostos Orgânicos , Fenantrenos/análise , Solo/química , Poluentes do Solo/análise
7.
Water Res ; 219: 118550, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35567845

RESUMO

Shallow lakes are more susceptible to eutrophication than deep lakes. The geochemical and biogeochemical mechanisms controlling the vulnerability to eutrophication for deep lakes and shallow lakes remain unknown. Therefore, we investigated the combined Phosphorus (P) retention mechanism with P fractions, water depth, distribution of P-binding metal elements, and macrophytes coverage in a degrading ecosystem of Erhai Lake. We concluded that different mechanisms control the P retention in deep-water areas and shallow-water areas. In shallow areas covered by macrophytes, the biogeochemical process manipulates the P retention by changing the total organic carbon (TOC), calcium (Ca) distributions and turbulence. In deep areas without macrophyte coverage, the aluminum (Al) and iron (Fe) distributions control the P retention by a physicochemical process. Manganese (Mn) was found to be a potential proxy in tracking the kinetic release and readsorb of redox-sensitive P (BD-P) in deep areas. The historical record and core sample indicate that the hydrological engineering induced water depth variation is a vital factor changing the ecosystem of Erhai Lake by forming a large area of intermediate area where macrophytes could only survive at low water level. The uplift of water level in the 1990s gradually changed the ecosystem of Erhai Lake from macrophyte-dominated to algal-macrophyte concomitant that reduced the accumulation of stable P fractions and their binding metals. Macrophytes were capable to preserve P in biomass in the macrophyte-dominated ecosystem, which released 150% and 72% of more labile organic P (NaOH25-nrP) and BD-P in the sediment after the deterioration than before, respectively. Therefore, water depth is a prerequisite to restoring the P preservation capacity of sediment and the macrophyte ecosystem. Further hydraulic engineering projects should consider the effect of water-level-variation-induced ecosystem transition.


Assuntos
Ecossistema , Fósforo , China , Eutrofização , Sedimentos Geológicos , Lagos , Metais , Fósforo/análise , Água
8.
Chemosphere ; 269: 128740, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33139044

RESUMO

In this study, bamboo-shaped carbon nanotubes exhibiting high nitrogen content and Ni encapsulation (Ni@NCNT) were effectively synthesized by a simple pyrolysis method. The catalytic peroxydisulfate activation for cephalexin (CPX) degradation was investigated using the prepared material. SnO2 was further decorated and fabricated on the anode material (SnO2/Ni@NCNT) for electrochemical degradation of CPX in an aqueous solution. Transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy indicated that the SnO2 nanoparticles were uniformly distributed on the surface of Ni@NCNT. Electrochemical characterization employing cyclic voltammetry and linear sweep voltammetry demonstrated that SnO2/Ni@NCNT displayed higher oxygen evolution potential and electrocatalytic activity than Ni@NCNT. Mineralization of CPX in wastewater was performed using electrolysis coupled with persulfate oxidation. The analysis revealed a synergistic strengthening effect. The electropersulfate oxidation resulted in higher total organic carbon (TOC) removal (70.3%) than the sum of electrooxidation (48.1%) and persulfate oxidation (9.2%) toward CPX. This phenomenon might result from the regeneration of sulfate radicals (SO4•-) on the anode and complementary oxidation by SO4•- and OH. Persulfate oxidation alone was shown to result in low TOC removal, although CPX was mostly degraded. Additionally, the CPX degradation pathway involving electropersulfate oxidation was proposed and it is indicated that CPX molecules were completed decomposed by the examination of short chain acids, mineralized ions, and ecotoxicity evolution indicated that the antibiotic was completely degraded. This study provides a new approach for the design and preparation of novel electrode materials and electrochemical degradation facilities for the removal of pollutants via persulfate activation.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Cefalexina , Eletrodos , Eletrólise , Nitrogênio , Oxirredução , Compostos de Estanho
9.
Water Res ; 185: 116221, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32731076

RESUMO

River algal blooms have become a challenging environmental problem worldwide due to strong interference of human activities and megaprojects (e.g., big dams and large-scale water transfer projects). Previous studies on algal blooms were mainly focused on relatively static water bodies (i.e., lakes and reservoirs), but less on the large rivers. As the largest tributary of the Yangtze River of China and the main freshwater source of the South-to-North Water Diversion Project (SNWDP), the Han River has experienced frequent algal blooms in recent decades. Here we investigated the algal blooms during a decade (2003-2014) in the Han River by two gradient boosting machine (GBM) models with k-fold cross validation, which used explanatory variables from current 10-day (GBMc model) or previous 10-day period (GBMp model). Our results advocate the use of GBMp due to its higher accuracy (median Kappa = 0.9) and practical predictability (using antecedent observations) compared to GBMc. We also revealed that the algal blooms in the Han River were significantly modulated by antecedent water levels in the Han River and the Yangtze River and water level variation in the Han River, whereas the nutrient concentrations in the Han River were usually above thresholds and not limiting algal blooms. This machine-learning-based study potentially provides scientific guidance for preemptive warning and risk management of river algal blooms through comprehensive regulation of water levels during the dry season by making use of water conservancy measures in large rivers.


Assuntos
Monitoramento Ambiental , Rios , China , Eutrofização , Humanos , Lagos
10.
Environ Pollut ; 263(Pt B): 114436, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32259720

RESUMO

In this work, the electrochemical degradation of antibiotic ceftazidime has been studied using a novel rare earth metal Ce and carbon nanotubes codoped PbO2 electrode. A competitively high oxygen evolution potential (2.4 V) and enhanced catalytic surface area were obtained, evidence by LSV and CV electrochemical characterization. The G/CNT-Ce/PbO2-Ce electrode possessed a more compact structure and a smaller grain size than the other PbO2 and Ce-PbO2 electrodes, exhibiting a prolonged service lifetime, evidence by accelerated lifespan test and recycling degradation experiment. As electrolysis time reached 120 min, the removal efficiency of ceftazidime and TOC arrived at 100.0% and 54.2% respectively in 0.05 M Na2SO4 solution containing 50 mg⋅L-1 ceftazidime. The effect of applied current density, pH value, initial ceftazidime concentration and chloride contents on the degradation performance were systematically evaluated. The results demonstrated that electrochemical oxidation of ceftazidime over the G/CNT-Ce/PbO2-Ce electrode was highly effective, and the mineralization rate was greatly improved, compared with pristine PbO2 electrode. Considering the toxicity was increased after 30 min electrolysis, the intermediates were quantitatively investigated through HPLC-MS, GC-MS and IC technology. According to the identified products, a reaction mechanism has been proposed and pyridine and aminothiazole were detected with concentration from approximately 1 to 3 mg⋅L-1, which were regarded as toxic byproducts during electrooxidation. Further electrocatalyzing by ring cleavage reaction and complete mineralization to CO2, NO3- and NH4+ was proposed, which demonstrated the G/CNT-Ce/PbO2-Ce electrode exhibited high efficiency for ceftazidime removal in mild conditions.


Assuntos
Grafite , Nanotubos de Carbono , Poluentes Químicos da Água/análise , Ceftazidima , Eletrodos , Oxirredução , Óxidos
11.
Chemosphere ; 250: 126163, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32109696

RESUMO

Due to the potential threatening of antibiotics in aqueous environment, a novel electro-oxidation (EO) - electro-Fenton (EF) -persulfate (PS) system with the addition of peroxydisulfate and Fe2+ was installed for the degradation of cefotaxime. Ti/CNT/SnO2-Sb-Er with an ultra-high oxygen evolution potential (2.15 V) and enhanced electrocatalytic surface area was adopted as anode. The OH production and electrode stability test demonstrated great improvement in the electrochemical performances. Ni@NCNT cathode was tested with higher H2O2 generation by the presence of nitrogen functionalities due to the acceleration of electron transfer of O2 reduction. Experiment results indicated CNT and ErO2 modification increased the molecular and TOC removal of cefotaxime. Coupling processes of EO-EF and EO-PS both resulted in shorter electrolysis time for complete cefotaxime removal, however, the mineralization ability of EO-PS process was lower than EO-EF, which might result from the immediate vanishing of PS. Thus, a further improved treatment EO-EF-PS system achieved an 81.6% TOC removal towards 50 mg L-1 cefotaxime after 4 h electrolysis, under the optimal working condition Fe2+ = PS = 1 mM. The influence of current density and initial concentration on the performance of all processes was assessed. Methanol and tert-butanol were added in the system as OH and SO4- scavengers, which illustrating the mechanism of EO-EF-PS oxidizing process was the result of the two free radicals. Major intermediates were deduced and the degradation pathway of cefotaxime was analyzed. This research provides a potential coupling process with high antibiotic removal efficiency and effective materials for practical uses.


Assuntos
Cefotaxima/química , Poluentes Químicos da Água/química , Antibacterianos/química , Eletrodos , Eletrólise/métodos , Peróxido de Hidrogênio/química , Oxirredução , Titânio , Águas Residuárias/química , Água , Purificação da Água/métodos
12.
Environ Sci Pollut Res Int ; 26(16): 16433-16448, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30980374

RESUMO

Commercial activated carbon fiber (ACF) has been employed as particle electrodes to degrade aqueous m-cresol in 3-D electrode systems. To enhance the electrooxidation performance, three types of new ACF modification modes (anodic oxidation, cathodic reduction, and aqueous oxidation with concentrated HNO3) were introduced in this paper. These pretreated samples were characterized by N2 adsorption, scanning electron microscopy (SEM), cyclic voltammetry (CV), temperature-programmed desorption mass (TPD-MS), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR). It was revealed that the two new modification methods could efficiently modify the surface morphology as well as the chemical property. Eight types of surface oxygen groups (SOGs) were identified on the surface of ACF, and the types and amount of SOGs might be related to the oxidation effect of ACF on the 3-D electrodes. The effect and mechanism of these SOGs on electrooxidation performance were discussed with the aid of the frontier molecular orbital theory. It was demonstrated that the H2O2-·OH reaction mechanism was improved in the 3-D electrode system and the mechanism was elucidated.


Assuntos
Fibra de Carbono , Carvão Vegetal/química , Cresóis/química , Técnicas Eletroquímicas/métodos , Eletrodos , Adsorção , Técnicas Eletroquímicas/instrumentação , Poluentes Ambientais/química , Peróxido de Hidrogênio , Microscopia Eletrônica de Varredura , Oxirredução , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Chemosphere ; 212: 594-603, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30172041

RESUMO

In order to develop an efficient electrode to remove pharmaceutical and personal care products from wastewater, copper and antimony doped Ti/SnO2 electrode were prepared by thermal decomposition. Electrochemical characterization was undertaken on Ti/SnO2-Cu using cyclic voltammetry and linear sweep voltammetry, indicating an ultra-high 2.1 V of oxygen evolution potential, better stability, and superior corrosion resistance rather than traditional Ti/SnO2-Sb electrode. Competitive degradation experiments showed more efficient removal rate was achieved on Ti/SnO2-Cu electrode, which could remove more than 90% ceftazidime within 60 min. The microstructure and crystal orientation of the modified electrodes were investigated by scanning electron microscopy, which indicated that the crystal of the Ti/SnO2-Cu electrode grew in more porous and uniform condition, covered with closely arranged layers of the coating. X-ray photoelectron spectroscopy and X-ray diffractions suggested that Cu2O was successfully coated on the Ti/SnO2-Cu electrode surface. The operating parameters of electrochemical degradation process were also investigated, including current density, initial concentration, electrode distance, stirring rate and supporting electrolyte. Consequently, the intermediate products of electrochemical degradation were monitored by liquid chromatography-mass spectrometry and a major degradation pathway was proposed.


Assuntos
Antibacterianos/uso terapêutico , Ceftazidima/uso terapêutico , Compostos de Estanho/química , Titânio/química , Poluentes Químicos da Água/química , Antibacterianos/farmacologia , Ceftazidima/farmacologia , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...